If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.6x^2+36x=0
a = -0.6; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·(-0.6)·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*-0.6}=\frac{-72}{-1.2} =+60 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*-0.6}=\frac{0}{-1.2} =0 $
| 29+6h=95 | | n+4.4=3.8n+5.5n+0.25 | | 7a^2-44a-35=0 | | z=1.32 | | q=45-18 | | 2x-7=-28 | | x+(x+24)+2(x+24)=376 | | 5(g+8)+5+4g=9g+45 | | 9x+20=3x-16 | | 12n;n=4 | | 5.1+0.3y=y+3.7 | | 50*x=12 | | -15/18x-12/18x=-24 | | 6=2(x+8)=-5x | | 1=r/13 | | -16x^2+24.25x+4=0 | | x²+4=4 | | 2x-7=0.7 | | 27=5x-19 | | 40x+80=-120 | | (D^4+3D^3+D^2)y=0 | | (5696/4-k)*5=1020 | | 3a+4=-1 | | 7x+2(5x-20)=62 | | 3y-9+18=36 | | x+(2x)+(2x+5)=109 | | 0.5=0.5x-10 | | 5x-6=9+2x | | 6.3x=32 | | 4(x+3)+1=21 | | 5x+16=49 | | -2w+5=w+5-3w |